Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add filters








Year range
1.
Journal of Cancer Prevention ; : 195-206, 2021.
Article in English | WPRIM | ID: wpr-899051

ABSTRACT

Pancreatic stellate cells (PSCs) are activated by inflammatory stimuli, such as TNF-α or viral infection. Activated PSCs play a crucial role in the development of chronic pancreatitis. Polyinosinic-polycytidylic acid (poly (I:C)) is structurally similar to double-stranded RNA and mimics viral infection. Docosahexaenoic acid (DHA) exhibits anti-inflammatory activity. It inhibited fibrotic mediators and reduced NF-κB activity in the pancreas of mice with chronic pancreatitis. The present study aimed to investigate whether DHA could suppress cytokine expression in PSCs isolated from rats. Cells were pre-treated with DHA or the antioxidant N-acetylcysteine (NAC) and stimulated with TNF-α or poly (I:C). Treatment with TNF-α or poly (I:C) increased the expression of monocyte chemoattractant protein 1 (MCP-1) and chemokine C-X3-C motif ligand 1 (CX3CL1), which are known chemoattractants, and enhanced intracellular and mitochondrial reactive oxygen species (ROS) production and NF-κB activity, but reduced mitochondrial membrane potential (MMP). Increased intracellular and mitochondrial ROS accumulation, cytokine expression, MMP disruption, and NF-κB activation were all prevented by DHA in TNF-α- or poly (I:C)-treated PSCs. NAC suppressed TNF-α- or poly (I:C)-induced expression of MCP-1 and CX3CL1. In conclusion, DHA inhibits poly (I:C)- or TNF-α-induced cytokine expression and NF-κB activation by reducing intracellular and mitochondrial ROS in PSCs. Consumption of DHA-rich foods may be beneficial in preventing chronic pancreatitis by inhibiting cytokine expression in PSCs.

2.
Journal of Cancer Prevention ; : 64-70, 2021.
Article in English | WPRIM | ID: wpr-899043

ABSTRACT

House dust mite (HDM) is one of the significant causes for airway inflammation such as asthma. It induces oxidative stress and an inflammatory response in the lungs through the release of chemokines such as interleukin-8 (IL-8). Reactive oxygen species (ROS) activate inflammatory signaling mediators such as mitogen-activated protein kinases (MAPKs) and redox-sensitive transcription factors including NF-κB and AP-1. Ascorbic acid shows an antioxidant and anti-inflammatory activities in various cells. It ameliorated the symptoms of HDM-induced rhinitis. The present study was aimed to investigate whether HDM could induce IL-8 expression through activation of MAPKs, NF-κB, and AP-1 and whether ascorbic acid could inhibit HDM-stimulated IL-8 expression by reducing ROS and suppressing activation of MAPKs, NF-κB, and AP-1 in respiratory epithelial H292 cells. H292 cells were treated with HDM (5 μg/mL) in the absence or presence of ascorbic acid (100 or 200 μM). HDM treatment increased ROS levels, and activated MAPKs, NF-κB, and AP-1 and thus, induced IL-8 expression in H292 cells. Ascorbic acid reduced ROS levels and inhibited activation of MAPKs, NF-κB and AP-1 and L-8 expression in H292 cells. In conclusion, consumption of ascorbic acid-rich foods may be beneficial for prevention of HDM-mediated respiratory inflammation by suppressing oxidative stress-mediated MAPK signaling pathways and activation of NF-kB and AP-1.

3.
Journal of Cancer Prevention ; : 195-206, 2021.
Article in English | WPRIM | ID: wpr-891347

ABSTRACT

Pancreatic stellate cells (PSCs) are activated by inflammatory stimuli, such as TNF-α or viral infection. Activated PSCs play a crucial role in the development of chronic pancreatitis. Polyinosinic-polycytidylic acid (poly (I:C)) is structurally similar to double-stranded RNA and mimics viral infection. Docosahexaenoic acid (DHA) exhibits anti-inflammatory activity. It inhibited fibrotic mediators and reduced NF-κB activity in the pancreas of mice with chronic pancreatitis. The present study aimed to investigate whether DHA could suppress cytokine expression in PSCs isolated from rats. Cells were pre-treated with DHA or the antioxidant N-acetylcysteine (NAC) and stimulated with TNF-α or poly (I:C). Treatment with TNF-α or poly (I:C) increased the expression of monocyte chemoattractant protein 1 (MCP-1) and chemokine C-X3-C motif ligand 1 (CX3CL1), which are known chemoattractants, and enhanced intracellular and mitochondrial reactive oxygen species (ROS) production and NF-κB activity, but reduced mitochondrial membrane potential (MMP). Increased intracellular and mitochondrial ROS accumulation, cytokine expression, MMP disruption, and NF-κB activation were all prevented by DHA in TNF-α- or poly (I:C)-treated PSCs. NAC suppressed TNF-α- or poly (I:C)-induced expression of MCP-1 and CX3CL1. In conclusion, DHA inhibits poly (I:C)- or TNF-α-induced cytokine expression and NF-κB activation by reducing intracellular and mitochondrial ROS in PSCs. Consumption of DHA-rich foods may be beneficial in preventing chronic pancreatitis by inhibiting cytokine expression in PSCs.

4.
Journal of Cancer Prevention ; : 64-70, 2021.
Article in English | WPRIM | ID: wpr-891339

ABSTRACT

House dust mite (HDM) is one of the significant causes for airway inflammation such as asthma. It induces oxidative stress and an inflammatory response in the lungs through the release of chemokines such as interleukin-8 (IL-8). Reactive oxygen species (ROS) activate inflammatory signaling mediators such as mitogen-activated protein kinases (MAPKs) and redox-sensitive transcription factors including NF-κB and AP-1. Ascorbic acid shows an antioxidant and anti-inflammatory activities in various cells. It ameliorated the symptoms of HDM-induced rhinitis. The present study was aimed to investigate whether HDM could induce IL-8 expression through activation of MAPKs, NF-κB, and AP-1 and whether ascorbic acid could inhibit HDM-stimulated IL-8 expression by reducing ROS and suppressing activation of MAPKs, NF-κB, and AP-1 in respiratory epithelial H292 cells. H292 cells were treated with HDM (5 μg/mL) in the absence or presence of ascorbic acid (100 or 200 μM). HDM treatment increased ROS levels, and activated MAPKs, NF-κB, and AP-1 and thus, induced IL-8 expression in H292 cells. Ascorbic acid reduced ROS levels and inhibited activation of MAPKs, NF-κB and AP-1 and L-8 expression in H292 cells. In conclusion, consumption of ascorbic acid-rich foods may be beneficial for prevention of HDM-mediated respiratory inflammation by suppressing oxidative stress-mediated MAPK signaling pathways and activation of NF-kB and AP-1.

5.
Journal of Cancer Prevention ; : 244-251, 2020.
Article in English | WPRIM | ID: wpr-899029

ABSTRACT

Helicobacter pylori is recognized as a risk factor for gastric carcinogenesis. The chronic exposure of gastric epithelium to H. pylori induces a prolonged inflammatory state that may progress to gastric cancer. Astaxanthin, a pinkish antioxidant carotenoid, abundant in marine organisms, is known for its protective effect against inflammation and multiple types of cancer. The purpose of this study was to examine the effect of astaxanthin on H. pylori-induced oxidative injury, inflammation, and oncogene expression in gastric mucosal tissues of the infected mice. Mice were inoculated using oral gavage with H. pylori suspension (10 8 colony forming unit of H. pylori/0.1 mL) for three days, after which they were fed astaxanthin-supplemented diet (5 mg/kg body weight/day for seven weeks). The effects of astaxanthin on H. pylori-induced increase in lipid peroxide (LPO) production, myeloperoxidase (MPO) activity, expression of the inflammatory cytokine IFN-γ and oncogenes (c-myc and cyclin D1), and the accompanying histologic changes in gastric mucosal tissues were evaluated. H. pylori infection increased the level of LPO, MPO activity, and the expression of IFN-γ, c-myc, and cyclin D1 in gastric mucosal tissues of mice. H. pylori infection induced neutrophil infiltration and hyperplasia of gastric mucosa. Astaxanthin supplementation attenuated these effects. In conclusion, consumption of astaxanthin-rich foods may prevent H. pyloriassociated oxidative damage and inflammatory and oncogenic responses in gastric mucosal tissues.

6.
Journal of Cancer Prevention ; : 244-251, 2020.
Article in English | WPRIM | ID: wpr-891325

ABSTRACT

Helicobacter pylori is recognized as a risk factor for gastric carcinogenesis. The chronic exposure of gastric epithelium to H. pylori induces a prolonged inflammatory state that may progress to gastric cancer. Astaxanthin, a pinkish antioxidant carotenoid, abundant in marine organisms, is known for its protective effect against inflammation and multiple types of cancer. The purpose of this study was to examine the effect of astaxanthin on H. pylori-induced oxidative injury, inflammation, and oncogene expression in gastric mucosal tissues of the infected mice. Mice were inoculated using oral gavage with H. pylori suspension (10 8 colony forming unit of H. pylori/0.1 mL) for three days, after which they were fed astaxanthin-supplemented diet (5 mg/kg body weight/day for seven weeks). The effects of astaxanthin on H. pylori-induced increase in lipid peroxide (LPO) production, myeloperoxidase (MPO) activity, expression of the inflammatory cytokine IFN-γ and oncogenes (c-myc and cyclin D1), and the accompanying histologic changes in gastric mucosal tissues were evaluated. H. pylori infection increased the level of LPO, MPO activity, and the expression of IFN-γ, c-myc, and cyclin D1 in gastric mucosal tissues of mice. H. pylori infection induced neutrophil infiltration and hyperplasia of gastric mucosa. Astaxanthin supplementation attenuated these effects. In conclusion, consumption of astaxanthin-rich foods may prevent H. pyloriassociated oxidative damage and inflammatory and oncogenic responses in gastric mucosal tissues.

7.
Journal of Cancer Prevention ; : 233-239, 2019.
Article in English | WPRIM | ID: wpr-785914

ABSTRACT

BACKGROUND: Chronic pancreatitis (CP) is an irreversible progressive disease that destroys exocrine parenchyma, which are replaced by fibrous tissue. As pancreatic fibrosis is a key feature of CP, reducing fibrotic protein content in the pancreas is crucial for preventing CP. Studies suggest that NF-κB facilitates the expression of fibrotic mediators in pancreas and protein kinase C-δ (PKC-δ) regulates NF-κB activation in stimulated pancreatic acinar cells. Docosahexaenoic acid (DHA) is an omega-3 fatty acid having anti-inflammatory and anti-fibrotic effects. It has been shown to inhibit NF-κB activity in cerulein-stimulated pancreatic acinar cells which is a cellular model of CP. In the present study, we investigated if DHA inhibits expression of fibrotic mediators by reducing PKC-δ and NF-κB expression in mouse pancreatic tissues with CP.METHODS: For six weeks, mice were weekly induced for acute pancreatitis to develop CP. Furthermore, acute pancreatitis was induced by hourly intraperitoneal injections of cerulein (50 μg/kg × 7). Mice were administered DHA (10 μM) via drinking water before and after CP induction.RESULTS: Cerulein-induced pancreatic damages like decreased pancreatic weight/total body weight, leukocyte infiltration, necrosis of acinar cells, and vacuolization were found to be inhibited by DHA. Additionally, DHA inhibited cerulein-induced fibrotic mediators like alpha-smooth muscle actin and fibronectin in pancreas. DHA reduced expression of PKC-δ and NF-κB p65 in pancreatic tissues of cerulein-treated mice.CONCLUSIONS: DHA may be beneficial in preventing CP by suppressing pancreatic expression of fibrotic mediators.


Subject(s)
Animals , Mice , Acinar Cells , Actins , Body Weight , Ceruletide , Drinking Water , Fibronectins , Fibrosis , Injections, Intraperitoneal , Leukocytes , Necrosis , Pancreas , Pancreatitis , Pancreatitis, Chronic , Protein Kinases
8.
Journal of Cancer Prevention ; : 192-196, 2019.
Article in English | WPRIM | ID: wpr-764309

ABSTRACT

BACKGROUND: Helicobacter pylori infection is a major risk factor in the development of gastric cancer. H. pylori infection of gastric epithelial cells increases the levels of reactive oxygen species (ROS), activates oncogenes, and leads to β-catenin-mediated hyper-proliferation. β-Carotene reduces ROS levels, inhibits oxidant-mediated activation of inflammatory signaling and exhibits anticancer properties. The present study was carried out to determine if β-carotene inhibits H. pylori-induced cell proliferation and the expression of oncogenes c-myc and cyclin E by reducing the levels of β-catenin and phosphorylated glycogen synthase kinase 3β (p-GSK3β). METHODS: Gastric epithelial AGS cells were pre-treated with β-carotene (5 and 10 μM) for 2 hours prior to H. pylori infection and cultured for 6 hours (for determination of the levels of p-GSK3β, GSK3β, and β-catenin) and 24 hours (for determination of cell viability and protein levels of c-myc and cyclin E). Cell viability was determined by the MTT assay and protein levels were determined via western blot-based analysis. RESULTS: β-Carotene inhibited H. pylori-induced increases in the percentage of viable cells, phosphorylated GSK3β (p-GSK3β), and the levels of β-catenin, c-myc and cyclin E. CONCLUSIONS: β-Carotene inhibits H. pylori-induced hyper-proliferation of gastric epithelial cells by suppressing β-catenin signaling and oncogene expression.


Subject(s)
beta Carotene , beta Catenin , Cell Proliferation , Cell Survival , Cyclin E , Cyclins , Epithelial Cells , Glycogen Synthase Kinases , Helicobacter pylori , Helicobacter , Oncogenes , Reactive Oxygen Species , Risk Factors , Stomach Neoplasms
9.
Journal of Cancer Prevention ; : 54-58, 2019.
Article in English | WPRIM | ID: wpr-764294

ABSTRACT

BACKGROUND: Helicobacter pylori increases production of reactive oxygen species (ROS), which activates inflammatory and carcinogenesis-related signaling pathways in gastric epithelial cells. Therefore, reducing ROS, by upregulating antioxidant enzyme, such as superoxide dismutase (SOD), may be a novel strategy to prevent H. pylori-associated gastric diseases. Astaxanthin is an antioxidant carotenoid that prevents oxidative stress-induced cell injury. The present study was aimed to determine whether H. pylori decreases SOD activity by changing the levels of SOD1/SOD2 and whether astaxanthin prevents changes in SOD levels and activity in H. pylori-infected gastric epithelial AGS cells. METHODS: AGS cells were pre-treated with astaxanthin for 3 hours prior to H. pylori infection and cultured for 1 hour in the presence of H. pylori. SOD levels and activity were assessed by Western blot analysis and a commercial assay kit, respectively. Mitochondrial ROS was determined using MitoSOX fluorescence. RESULTS: H. pylori decreased SOD activity and the SOD2 level, but increased mitochondrial ROS in AGS cells. The SOD1 level was not changed by H. pylori infection. Astaxanthin prevented H. pylori-induced decreases in the SOD2 level and SOD activity and reduced mitochondrial ROS in AGS cells. CONCLUSIONS: Consumption of astaxanthin-rich food may prevent the development of H. pylori-associated gastric disorders by suppressing mitochondrial oxidative stress.


Subject(s)
Blotting, Western , Epithelial Cells , Fluorescence , Helicobacter pylori , Helicobacter , Oxidative Stress , Reactive Oxygen Species , Stomach Diseases , Superoxide Dismutase , Superoxides
10.
Journal of Cancer Prevention ; : 189-194, 2017.
Article in English | WPRIM | ID: wpr-226316

ABSTRACT

Cerulein-induced pancreatitis is similar to human edematous pancreatitis, characterized by the dysregulation of digestive enzyme production, edema formation, and an infiltration of inflammatory cells into the pancreas. We previously showed that the Janus kinase 2 (JAK2)/STAT3 pathway mediates inflammatory signaling in cerulein-stimulated pancreatic acinar cells. PPAR-γ has been implicated in the regulation of inflammatory responses in several cells. In the present study, we investigated the role of PPAR-γ in cerulein-induced activation of JAK2/STAT3 in pancreatic acinar cells. Treatment with cerulein induced the activation of JAK2/STAT3 and PPAR-γ expression in AR42J cells. Cerulein-induced PPAR-γ expression was inhibited by AG490, a JAK2/STAT3 inhibitor, in AR42J cells. An immunoprecipitation analysis showed that PPAR-γ binds to STAT3 in cerulein-stimulated AR42J cells. Down-regulation of PPAR-γ by siRNA increased STAT3 phosphorylation in AR42J cells stimulated with cerulein. These results show that PPAR-γ inactivates STAT3 by directly interacting with STAT3 in cerulein-stimulated pancreatic acinar cells. Overexpression of PPAR-γ may be beneficial for preventing pancreatitis by suppressing the activation of STAT3 in pancreatic acinar cells.


Subject(s)
Humans , Acinar Cells , Ceruletide , Down-Regulation , Edema , Immunoprecipitation , Janus Kinase 2 , Pancreas , Pancreatitis , Peroxisomes , Phosphorylation , RNA, Small Interfering
11.
Yonsei Medical Journal ; : 647-651, 2016.
Article in English | WPRIM | ID: wpr-21850

ABSTRACT

PURPOSE: In the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients with gastritis or adenocarcinoma, proliferation of gastric epithelial cells is increased. Hyperproliferation is related to induction of oncogenes, such as β-catenin and c-myc. Even though transcription factors NF-κB and AP-1 are activated in H. pylori-infected cells, whether NF-κB or AP-1 regulates the expression of β-catenein or c-myc in H. pylori-infected cells has not been clarified. The present study was undertaken to investigate whether H. pylori-induced activation of NF-κB and AP-1 mediates the expression of oncogenes and hyperproliferation of gastric epithelial cells. MATERIALS AND METHODS: Gastric epithelial AGS cells were transiently transfected with mutant genes for IκBα (MAD3) and c-Jun (TAM67) or treated with a specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) or a selective AP-1 inhibitor SR-11302 to suppress activation of NF-κB or AP-1, respecively. As reference cells, the control vector pcDNA was transfected to the cells. Wild-type cells or transfected cells were cultured with or without H. pylori. RESULTS: H. pylori induced activation of NF-κB and AP-1, cell proliferation, and expression of oncogenes (β-catenein, c-myc) in AGS cells, which was inhibited by transfection of MAD3 and TAM67. Wild-type cells and the cells transfected with pcDNA showed similar activities of NF-κB and AP-1, proliferation, and oncogene expression regardless of treatment with H. pylori. Both CAPE and SR-11302 inhibited cell proliferation and expression of oncogenes in H. pylori-infected cells. CONCLUSION: H. pylori-induced activation of NF-κB and AP-1 regulates transcription of oncogenes and mediates hyperproliferation in gastric epithelial cells.


Subject(s)
Humans , Blotting, Western , Caffeic Acids , Cell Line, Tumor , Cell Proliferation , DNA, Bacterial/analysis , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Gastric Mucosa/metabolism , Gastritis/pathology , Gene Expression Regulation, Bacterial , Helicobacter Infections/metabolism , Helicobacter pylori/pathogenicity , NF-kappa B/antagonists & inhibitors , Peptide Fragments , Phenylethyl Alcohol/analogs & derivatives , Proto-Oncogene Proteins c-jun , Repressor Proteins , Transcription Factor AP-1/biosynthesis , Transcription Factors/metabolism , beta Catenin/metabolism
12.
Yonsei Medical Journal ; : 563-571, 2015.
Article in English | WPRIM | ID: wpr-38893

ABSTRACT

PURPOSE: Recent evidence shows that nitric oxide (NO) may exhibit both pro-cancer and anti-cancer activities. The present study aimed to determine the differentially expressed proteins in NO-treated NIH/3T3 fibroblasts in order to investigate whether NO induces proteins with pro-cancer or anti-cancer effects. MATERIALS AND METHODS: The cells were treated with 300 microM of an NO donor 3,3-bis-(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18) for 12 h. The changed protein patterns, which were separated by two-dimensional electrophoresis using pH gradients of 4-7, were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. RESULTS: Seventeen differentially expressed proteins were identified in NOC-18-treated cells. Nine proteins [vinculin protein, keratin 19, ubiquitous tropomodulin, F-actin capping protein (alpha1 subunit), tropomyosin 3, 26S proteasome-associated pad1 homolog, T-complex protein 1 (epsilon subunit) N(G)-dimethylarginine dimethylaminohydrolase, and heat shock protein 90] were increased and eight proteins (heat shock protein 70, glucosidase II, lamin B1, calreticulin, nucleophosmin 1, microtubule-associated protein retinitis pigmentosa/end binding family member 1, 150 kD oxygen-regulated protein precursor, and heat shock 70-related protein albino or pale green 2) were decreased by NOC-18 in the cells. Thirteen proteins are related to the suppression of cancer cell proliferation, invasion, and metastasis while two proteins (heat shock protein 90 and N(G)-dimethylarginine dimethylaminohydrolase) are related to carcinogenesis. The functions of 150 kD oxygen-regulated protein precursor and T-complex protein 1 (epsilon subunit) are unknown in relation to carcinogenesis. CONCLUSION: Most proteins differentially expressed by NOC-18 are involved in inhibiting cancer development.


Subject(s)
Animals , Humans , Mice , Electrophoresis, Gel, Two-Dimensional/methods , Fibroblasts/metabolism , HSP70 Heat-Shock Proteins , NIH 3T3 Cells , Neoplasms/metabolism , Nitric Oxide Donors , Nitroso Compounds , Proteins/analysis , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
13.
Yonsei Medical Journal ; : 1150-1154, 2015.
Article in English | WPRIM | ID: wpr-76549

ABSTRACT

NADPH oxidase produces a large amount of reactive oxygen species (ROS) in Helicobacter pylori (H. pylori)-induced gastric epithelial cells. Even though ROS mediate apoptotic cell death, direct involvement of NADPH oxidase on H. pylori-induced apoptosis remains unclear. Besides, H. pylori isolates show a high degree of genetic variability. The predominant genotype of H. pylori in Korea has been reported as cagA+, vacA s1b, m2, iceA genotype. Present study aims to investigate whether NADPH oxidase-generated ROS mediate apoptosis in human gastric epithelial AGS cells infected with H. pylori in a Korean isolate. AGS cells were pretreated with or without an NADPH oxidase inhibitor diphenyleneiodonium (DPI) and cultured in the presence of H. pylori at a bacterium/cell ratio of 300:1. Cell viability, hydrogen peroxide level, DNA fragmentation, and protein levels of p53, Bcl-2, and Bax were determined. Results showed that H. pylori inhibited cell viability with the density of H. pylori added to the cells. Inhibition of NADPH oxidase by DPI suppressed H. pylori-induced cell death, increased hydrogen peroxide, DNA fragmentation, and the ratio of Bax/Bcl-2, and p53 induction in AGS cells dose-dependently. The results suggest that targeting NADPH oxidase may prevent the development of gastric inflammation associated with H. pylori infection by suppressing abnormal apoptotic cell death of gastric epithelial cells.


Subject(s)
Humans , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Survival , Epithelial Cells/metabolism , Gastric Mucosa/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori/drug effects , NADPH Oxidases/metabolism , Onium Compounds/antagonists & inhibitors , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Republic of Korea , Stomach/cytology
14.
Yonsei Medical Journal ; : 862-866, 2015.
Article in English | WPRIM | ID: wpr-137565

ABSTRACT

Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-kappaB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-kappaB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IkappaBalpha were assessed by Western blot analysis, and NF-kappaB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-kappaB, determined by phosphorylation of IkappaBalpha and NF-kappaB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-kappaB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-kappaB is inhibited and inflammatory cytokine expression is suppressed.


Subject(s)
Humans , Blotting, Western , DNA, Bacterial/analysis , Epithelial Cells/metabolism , Gastric Mucosa/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation, Bacterial , Helicobacter Infections/immunology , Helicobacter pylori/genetics , Interleukin-8/genetics , Janus Kinase 1 , NF-kappa B/biosynthesis , Phosphorylation , RNA, Messenger/metabolism , STAT3 Transcription Factor , Signal Transduction/genetics
15.
Yonsei Medical Journal ; : 862-866, 2015.
Article in English | WPRIM | ID: wpr-137564

ABSTRACT

Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-kappaB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-kappaB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IkappaBalpha were assessed by Western blot analysis, and NF-kappaB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-kappaB, determined by phosphorylation of IkappaBalpha and NF-kappaB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-kappaB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-kappaB is inhibited and inflammatory cytokine expression is suppressed.


Subject(s)
Humans , Blotting, Western , DNA, Bacterial/analysis , Epithelial Cells/metabolism , Gastric Mucosa/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation, Bacterial , Helicobacter Infections/immunology , Helicobacter pylori/genetics , Interleukin-8/genetics , Janus Kinase 1 , NF-kappa B/biosynthesis , Phosphorylation , RNA, Messenger/metabolism , STAT3 Transcription Factor , Signal Transduction/genetics
16.
Gut and Liver ; : 84-93, 2010.
Article in English | WPRIM | ID: wpr-190620

ABSTRACT

BACKGROUND/AIMS: Cerulein pancreatitis is similar to human edematous pancreatitis with dysregulation of the production and secretion of digestive enzymes, edema formation, cytoplasmic vacuolization and the death of acinar cells. We hypothesized that membrane proteins may be altered as the early event during the induction of acute pancreatitis. Present study aims to determine the differentially expressed proteins in the membranes of cerulein-treated pancreatic acinar cells. METHODS: Pancreatic acinar AR42J cells were treated with 10(-8) M cerulein for 1 hour. Membrane proteins were isolated from the cells and separated by two-dimensional electrophoresis using pH gradients of 5-8. Membrane proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. The differentially expressed proteins, whose expression levels were more or less than three-fold in cerulein-treated cells, were analyzed. RESULTS: Two differentially expressed proteins (mannan-binding lectin-associated serine protease-2, heat shock protein 60) were up-regulated while four proteins (protein disulfide isomerase, gamma-actin, isocitrate dehydrogenase 3, seven in absentia homolog 1A) were down-regulated by cerulein treatment in pancreatic acinar cells. These proteins are related to cell signaling, oxidative stress, and cytoskeleton arrangement. CONCLUSIONS: Oxidative stress may induce cerulein-induced cell injury and disturbances in defense mechanism in pancreatic acinar cells.


Subject(s)
Humans , Acinar Cells , Actins , Ceruletide , Cytoplasm , Cytoskeleton , Edema , Electrophoresis , Heat-Shock Proteins , Isocitrate Dehydrogenase , Isocitrates , Mass Spectrometry , Membrane Proteins , Membranes , Oxidative Stress , Pancreatitis , Protein Disulfide-Isomerases , Proteins , Proteome , Proton-Motive Force , Serine
17.
The Korean Journal of Physiology and Pharmacology ; : 409-416, 2009.
Article in English | WPRIM | ID: wpr-727464

ABSTRACT

Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with 10(-8) M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis.


Subject(s)
Animals , Rats , Acinar Cells , Antibodies , Blotting, Western , Ceruletide , Cathepsin C , Cytoskeleton , Gene Expression , Guanylate Cyclase , Lithostathine , Myosin-Light-Chain Kinase , Oligonucleotide Array Sequence Analysis , Pancreatitis , Proteins , Real-Time Polymerase Chain Reaction , Ribosomal Proteins , Trypsin
SELECTION OF CITATIONS
SEARCH DETAIL